Copied to
clipboard

G = C2×C82order 128 = 27

Abelian group of type [2,8,8]

direct product, p-group, abelian, monomial

Aliases: C2×C82, SmallGroup(128,179)

Series: Derived Chief Lower central Upper central Jennings

C1 — C2×C82
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C2×C82
C1 — C2×C82
C1 — C2×C82
C1C22C22C42 — C2×C82

Generators and relations for C2×C82
 G = < a,b,c | a2=b8=c8=1, ab=ba, ac=ca, bc=cb >

Subgroups: 140, all normal (6 characteristic)
C1, C2, C4, C22, C22, C8, C2×C4, C23, C42, C42, C2×C8, C22×C4, C4×C8, C2×C42, C22×C8, C82, C2×C4×C8, C2×C82
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C42, C2×C8, C22×C4, C4×C8, C2×C42, C22×C8, C82, C2×C4×C8, C2×C82

Smallest permutation representation of C2×C82
Regular action on 128 points
Generators in S128
(1 95)(2 96)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 126)(10 127)(11 128)(12 121)(13 122)(14 123)(15 124)(16 125)(17 103)(18 104)(19 97)(20 98)(21 99)(22 100)(23 101)(24 102)(25 83)(26 84)(27 85)(28 86)(29 87)(30 88)(31 81)(32 82)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(71 79)(72 80)(105 113)(106 114)(107 115)(108 116)(109 117)(110 118)(111 119)(112 120)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 66 55 121 105 37 87 103)(2 67 56 122 106 38 88 104)(3 68 49 123 107 39 81 97)(4 69 50 124 108 40 82 98)(5 70 51 125 109 33 83 99)(6 71 52 126 110 34 84 100)(7 72 53 127 111 35 85 101)(8 65 54 128 112 36 86 102)(9 118 42 26 22 92 79 60)(10 119 43 27 23 93 80 61)(11 120 44 28 24 94 73 62)(12 113 45 29 17 95 74 63)(13 114 46 30 18 96 75 64)(14 115 47 31 19 89 76 57)(15 116 48 32 20 90 77 58)(16 117 41 25 21 91 78 59)

G:=sub<Sym(128)| (1,95)(2,96)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,126)(10,127)(11,128)(12,121)(13,122)(14,123)(15,124)(16,125)(17,103)(18,104)(19,97)(20,98)(21,99)(22,100)(23,101)(24,102)(25,83)(26,84)(27,85)(28,86)(29,87)(30,88)(31,81)(32,82)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)(112,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,66,55,121,105,37,87,103)(2,67,56,122,106,38,88,104)(3,68,49,123,107,39,81,97)(4,69,50,124,108,40,82,98)(5,70,51,125,109,33,83,99)(6,71,52,126,110,34,84,100)(7,72,53,127,111,35,85,101)(8,65,54,128,112,36,86,102)(9,118,42,26,22,92,79,60)(10,119,43,27,23,93,80,61)(11,120,44,28,24,94,73,62)(12,113,45,29,17,95,74,63)(13,114,46,30,18,96,75,64)(14,115,47,31,19,89,76,57)(15,116,48,32,20,90,77,58)(16,117,41,25,21,91,78,59)>;

G:=Group( (1,95)(2,96)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,126)(10,127)(11,128)(12,121)(13,122)(14,123)(15,124)(16,125)(17,103)(18,104)(19,97)(20,98)(21,99)(22,100)(23,101)(24,102)(25,83)(26,84)(27,85)(28,86)(29,87)(30,88)(31,81)(32,82)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)(112,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,66,55,121,105,37,87,103)(2,67,56,122,106,38,88,104)(3,68,49,123,107,39,81,97)(4,69,50,124,108,40,82,98)(5,70,51,125,109,33,83,99)(6,71,52,126,110,34,84,100)(7,72,53,127,111,35,85,101)(8,65,54,128,112,36,86,102)(9,118,42,26,22,92,79,60)(10,119,43,27,23,93,80,61)(11,120,44,28,24,94,73,62)(12,113,45,29,17,95,74,63)(13,114,46,30,18,96,75,64)(14,115,47,31,19,89,76,57)(15,116,48,32,20,90,77,58)(16,117,41,25,21,91,78,59) );

G=PermutationGroup([[(1,95),(2,96),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,126),(10,127),(11,128),(12,121),(13,122),(14,123),(15,124),(16,125),(17,103),(18,104),(19,97),(20,98),(21,99),(22,100),(23,101),(24,102),(25,83),(26,84),(27,85),(28,86),(29,87),(30,88),(31,81),(32,82),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(71,79),(72,80),(105,113),(106,114),(107,115),(108,116),(109,117),(110,118),(111,119),(112,120)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,66,55,121,105,37,87,103),(2,67,56,122,106,38,88,104),(3,68,49,123,107,39,81,97),(4,69,50,124,108,40,82,98),(5,70,51,125,109,33,83,99),(6,71,52,126,110,34,84,100),(7,72,53,127,111,35,85,101),(8,65,54,128,112,36,86,102),(9,118,42,26,22,92,79,60),(10,119,43,27,23,93,80,61),(11,120,44,28,24,94,73,62),(12,113,45,29,17,95,74,63),(13,114,46,30,18,96,75,64),(14,115,47,31,19,89,76,57),(15,116,48,32,20,90,77,58),(16,117,41,25,21,91,78,59)]])

128 conjugacy classes

class 1 2A···2G4A···4X8A···8CR
order12···24···48···8
size11···11···11···1

128 irreducible representations

dim111111
type+++
imageC1C2C2C4C4C8
kernelC2×C82C82C2×C4×C8C4×C8C22×C8C2×C8
# reps143121296

Matrix representation of C2×C82 in GL3(𝔽17) generated by

100
0160
0016
,
1300
0130
008
,
1500
020
0013
G:=sub<GL(3,GF(17))| [1,0,0,0,16,0,0,0,16],[13,0,0,0,13,0,0,0,8],[15,0,0,0,2,0,0,0,13] >;

C2×C82 in GAP, Magma, Sage, TeX

C_2\times C_8^2
% in TeX

G:=Group("C2xC8^2");
// GroupNames label

G:=SmallGroup(128,179);
// by ID

G=gap.SmallGroup(128,179);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,56,120,136,172]);
// Polycyclic

G:=Group<a,b,c|a^2=b^8=c^8=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations

׿
×
𝔽